Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of a radiation tolerant laser-induced breakdown spectroscopy system using a single crystal micro-chip laser for remote elemental analysis

Tamura, Koji; Nakanishi, Ryuzo; Oba, Hironori; Karino, Takahiro; Shibata, Takuya; Taira, Takunori*; Wakaida, Ikuo

Journal of Nuclear Science and Technology, 8 Pages, 2024/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Journal Articles

Radiation dose rate effects on the properties of a laser-induced breakdown spectroscopy system developed using a ceramics micro-laser for fiber-optic remote analysis

Tamura, Koji; Oba, Hironori; Saeki, Morihisa; Taguchi, Tomitsugu*; Lim, H. H.*; Taira, Takunori*; Wakaida, Ikuo

Journal of Nuclear Science and Technology, 58(4), p.405 - 415, 2021/04

 Times Cited Count:12 Percentile:84.32(Nuclear Science & Technology)

Radiation dose rate effects on the properties of a compact fiber-optic laser-induced breakdown spectroscopy (LIBS) system with a monolithic Nd:YAG/Cr:YAG composite ceramics were investigated for remote analysis in hazardous environment. To investigate radiation effects on the LIBS signal, properties related to the Nd:YAG laser operation such as oscillation threshold, output energy, oscillation timing, temporal pulse shape, and beam profile were measured as a function of the radiation dose rate from 0 to 10 kGy/hr in view of their influences to the signal. LIBS spectra of zirconium metal were measured under irradiation. Although signal intensity decreased considerably by irradiation, informative spectra were well obtained even at the maximum radiation dose rate. From the comparison of the LIBS-related parameters among the laser properties, signal reduction was mainly ascribed to the pulse energy reduction. Scintillation emission spectra were also measured from the ceramics during the irradiation, where the signal intensity increased linearly with the dose rate. The results show that the developed system.

Oral presentation

Basic R&D on decommissioning of Fukushima Daiichi Nuclear Power Station and application of Laser Remote Analysis for in-core and in-situ monitoring of debris

Wakaida, Ikuo; Oba, Hironori; Akaoka, Katsuaki; Oba, Masaki; Matsumoto, Ayumu; Miyabe, Masabumi; Ikeda, Yuji*; Sakka, Tetsuo*; Taira, Takunori*

no journal, , 

For the decommissioning of "Fukushima Daiichi Nuclear Power Station (F1NPS)", widely basic R&D and matting for actual application for decommissioning technology will be strongly required. CLADS/JAEA is one of the key institute for strategic promotion of Decommissioning Science on F1NPS. As for the development of rapid, easy, onsite and in-situ remote diagnostic/analysis techniques under extremely high radioactive condition, the concept of probing by light and diagnostic by light with radiation resistant optical fiber will be one of the simple, powerful and applicable choices as the innovative development based on laser induced breakdown spectroscopy (LIBS) technology. Optical fiber based LIBS is developed for in-core and in-situ elemental analysis of debris and its activity is performed under severe environmental conditions such as high radiation field of about 10kGy/h and under water. Long pulse laser, microwave assisted LIBS and microchip laser are also introduced for more high sensitivity.

Oral presentation

Advanced study on remote and in-situ elemental analysis of molten fuel debris in damaged core by innovative optical spectroscopy

Wakaida, Ikuo; Oba, Hironori*; Ikeda, Yuji*; Sakka, Tetsuo*; Taira, Takunori*

no journal, , 

Radiation resistant optical fiber based laser induced breakdown spectroscopy (Fiber LIBS) is developed for in-core and in-situ elemental analysis of debris and its activity is performed under severe environmental conditions such as high radiation field of about 10kGy/h and under water. Long pulse laser, microwave assisted LIBS for more high sensitivity and micro-chip Laser will be also introduced for In-Core use optical source.

Oral presentation

Laser remote analysis for decommissioning of Fukushima Daiichi Nuclear Power Station

Wakaida, Ikuo; Oba, Hironori; Akaoka, Katsuaki; Miyabe, Masabumi; Oba, Masaki; Taira, Takunori*

no journal, , 

Oral presentation

Basic R&D on laser remote analysis for in-situ monitoring of nuclear debris in decommissioning of "Fukushima Daiichi Nuclear Power Station"

Wakaida, Ikuo; Oba, Hironori; Akaoka, Katsuaki; Miyabe, Masabumi; Oba, Masaki; Matsumoto, Ayumu*; Sakka, Tetsuo*; Taira, Takunori*; Ikeda, Yuji*

no journal, , 

Oral presentation

Research and development on laser remote analysis for on-site, in-situ surveillance of nuclear debris in decommissioning of Fukushima Daiichi Nuclear Power Station

Wakaida, Ikuo; Oba, Hironori; Miyabe, Masabumi; Akaoka, Katsuaki; Tamura, Koji; Saeki, Morihisa; Oba, Masaki; Shibata, Takuya; Ikeda, Yuji*; Sakka, Tetsuo*; et al.

no journal, , 

Oral presentation

LIBS for "Fukushima"; Current results and challenge as a remote in-situ screening analysis

Wakaida, Ikuo; Oba, Hironori; Oba, Hironori*; Akaoka, Katsuaki; Karino, Takahiro; Nakanishi, Ryuzo*; Sakamoto, Kan*; Ikeda, Yuji*; Taira, Takunori*

no journal, , 

8 (Records 1-8 displayed on this page)
  • 1